The distance between two points is the length of the path connecting them. The shortest path distance is a straight line. In a 2 dimensional plane, the distance between points (X1, Y1) and (X2, Y2) is given by the Pythagorean theorem:
![d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/1h551ypq5weta3sw0dynfch7nxiwrgmnba.png)
![\begin{gathered} d=\sqrt[]{(1-(-7))^2+(-6-2)^2} \\ d=\sqrt[]{8^2+8^2} \\ d=\sqrt[]{64+64} \\ d=\sqrt[]{128} \\ d=11.31 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6sa0i2yhvifw0qlvk2fqjoxhcn7ddifz08.png)
The answer would be d = 11.31