The first expression is
![(7*6)+(7* y)](https://img.qammunity.org/2023/formulas/mathematics/college/x8xpk7ujb4zglmjfpv3egq0t0f9u7d14d8.png)
since there is 7 in both parenthesis, we can factorize 7, then we can write
![(7*6)+(7* y)=7(6+y)](https://img.qammunity.org/2023/formulas/mathematics/college/gw9ciobxms32pnss2mffvgrsm3se03yjox.png)
Second expression.
In this part, we have
![y(6+7)](https://img.qammunity.org/2023/formulas/mathematics/college/1ihaxcyfur3psho0h11d6yvpiklj8f90hz.png)
by applying the distributive law, this expression is equivalent to
![y(6+7)=y*6+y*7](https://img.qammunity.org/2023/formulas/mathematics/college/v1nkr9vbuc1ns4yntxkfkrryutuiih390e.png)
Third expression.
We have in this part:
![(6* y)+(6*7)](https://img.qammunity.org/2023/formulas/mathematics/college/qr2tmu3u40s44jrfvghwh0tmvnigcqjz9t.png)
similarly to the first question, we can factorize 6, then we obtain
![(6* y)+(6*7)=6(y+7)](https://img.qammunity.org/2023/formulas/mathematics/college/uj15pwyopg6zq5q7jm8p65m7u8t529ukgf.png)
Fourth expression.
We have in this part:
![y(6+y)](https://img.qammunity.org/2023/formulas/mathematics/college/jdnnqkajhdz8jhszv7fxklsy31gl7k860j.png)
by applying the distributive law, this expression is equivalent to
![\begin{gathered} y(6+y)=y*6+y* y \\ \sin ce\text{ y times y is } \\ y^2 \\ \text{then we have} \\ y(6+y)=y*6+y^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mquxvyc66uh7eu1227kv06o8xgi9k7m1a7.png)