ANSWER
![(I_(1))/(I_(2))=4](https://img.qammunity.org/2023/formulas/physics/college/cmnznmtvmu9p3dp7yc0gtnxwjdn8hrzv31.png)
Step-by-step explanation
Let the mass of disks 1 and 2 be m.
Let the radius of disk 2 be R.
This implies that the radius of disk 1 is 2R.
The moment of inertia of disk 1 is given by:
![\begin{gathered} I_1=(1)/(2)m(2R)^2 \\ I_1=(1)/(2)m*4R^2 \\ I_1=2mR^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1exby4a4fvf3hmzpj3xe505721pltncrmk.png)
The moment of inertia of disk 2 is given by:
![I_2=(1)/(2)mR^2](https://img.qammunity.org/2023/formulas/physics/college/7861vrvqcg8dnatu3wjjphj15vob3hcig6.png)
Therefore, the ratio of the moment of inertia of disk 1 to disk 2 is:
![\begin{gathered} (I_1)/(I_2)=(2mR^2)/((1)/(2)mR^2) \\ (I_1)/(I_2)=(2)/((1)/(2))=2*2 \\ (I_1)/(I_2)=4 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ooprxeeob327bxrd5smeh9psd05721c9np.png)
That is the answer.