![g(x)=x^3-x^2-4x+4](https://img.qammunity.org/2023/formulas/mathematics/college/nhx18bl4j96rnd9qscji8coljoftndtkgf.png)
End behavior: You have the leading coefficient (number write in front of the variable with the largest exponent) of +1 and the polynomial degree is odd (3).
For this features the end behavior is: falls to left and rises to right.
Y-intercept: The value of g(x) when it cross the y-axis (when x is 0)
Substitute the x in the equation by 0 and evaluate the function:
![\begin{gathered} g(0)=0^3-0^2-4(0)+4 \\ g(0)=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x7qzt80o3apxzpthpqeanmnxwuwu8m6541.png)
y-intercept: 4
To find the zeros:
Equals the function to 0
![x^3-x^2-4x+4=0](https://img.qammunity.org/2023/formulas/mathematics/college/my2jcmg70jo1368pxjx72p3m8f5n3ru1fj.png)
Factor:
-Factor x²
![x^2(x-1)-4x+4=0](https://img.qammunity.org/2023/formulas/mathematics/college/c564svx1uvzlfabrbz3r6px4jgc2yv0as2.png)
-Factor -4:
![x^2(x-1)-4(x-1)=0](https://img.qammunity.org/2023/formulas/mathematics/college/k2cnewe4xe1lsukygq1lnexc24jouwdgse.png)
-Factor (x-1):
![(x-1)(x^2-4)=0](https://img.qammunity.org/2023/formulas/mathematics/college/6lkew36rw77wj2fdbh2pb94iuvnd8mf45m.png)
Write the second factor as a substraction of squares:
![\begin{gathered} (x-1)(x^2-2^2)=0 \\ \\ a^2-b^2=(a+b)(a+b) \\ \\ (x-1)(x+2)(x-2)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ffbor6bty820h9jiy28nbbg6qsdvfxqi6n.png)
Equal each factor to 0 and solve x:
![\begin{gathered} x-1=0 \\ x=1 \\ \\ x+2=0 \\ x=-2 \\ \\ x-2=0 \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8jtnno99xrkwwkc6nmh29mqiyk8pcu1emo.png)
Then, the zeros of g(x) are: x=1, -2, 2