From the given question
There are given that the sides of the triangle:
![a=15\operatorname{cm},\text{ b=41 cm, c=29 cm}]()
Now,
Find the first angle by using the cosine rule
So,
For angle A,
![a^2=b^2+c^2-2bc\cos A](https://img.qammunity.org/2023/formulas/mathematics/college/skeau9ab3o6bvr1rywsutrp9q4x3jotvls.png)
Then,
![\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ 15^2=41^2+29^2-2*41*29*\cos A \\ 225^{}=1681+841-2378*\cos A \\ 225=2522-2378\cos A \\ -2297=-2378\cos A \\ \cos A=(2297)/(2378) \\ \cos A=0.96 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ltxaoye80lxpuhbwrwtol3ry9mf8fm5pt.png)
Then,
![\begin{gathered} A=\cos ^(-1)(0.96) \\ A=16.26 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ncfl2ksuohcpmdjpc2nwjcrkzll7hy7t5v.png)
Now,
for the second angle B,
Use sine law:
So,
![\begin{gathered} (\sin A)/(a)=(\sin B)/(b) \\ (\sin16.26)/(15)=(\sin B)/(41) \\ \sin B*15=\sin 16.26*41 \\ \sin B=(\sin16.26*41)/(15) \\ \sin B=(11.5)/(15) \\ \sin B=0.76 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w4a8ckabupli9kjj8yl59egig53n14vlxy.png)
Then,
![\begin{gathered} \sin B=0.76 \\ B=135.0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u5esuh2ta5j2mpp7shw8p9ilb1h6xpfs4v.png)
Now,
For the third angle:
![\begin{gathered} \angle A+\angle B+\angle C=180^(\circ) \\ 16.26+135+\angle C=180^(\circ) \\ \angle C=28.74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xjoj190w212w6uqlsy9aq9v3ynq84zhpke.png)
Hence, the correct option is A.