Step-by-step explanation:
We are given the following details for a triangular prism;
![\begin{gathered} \text{Surface area}=174 \\ \text{Width}=w \\ \text{Length}=3w \\ \text{Height}=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mv1v9qu0ldd8al2ebs66d95oman1qxxmsr.png)
Note that for the rectangular base, one side is 3 times the other. Hence, if the width is w, then the length would be 3 times w.
The surface area of a rectangular prism is;
![S=2(wl+hl+hw)](https://img.qammunity.org/2023/formulas/mathematics/college/cxcan5vj29qt8wu4gv4814lsaxw51dhpkr.png)
With the side lengths given we can now substitute and we'll have;
![\begin{gathered} 174=2(\lbrack w*3w\rbrack+\lbrack5*3w\rbrack+\lbrack5w\rbrack) \\ 174=2(3w^2+15w+5w) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/n1766l5wkyovrekrnz3xgqs5rqiqcrzrze.png)
Divide both sides by 2;
![\begin{gathered} 87=3w^2+15w+5w \\ 87=3w^2+20w \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5iaxukjv0i6gnsrft2wdvexbncyre1c799.png)
We shall now move all terms to one side of the equation;
![3w^2+20w-87=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/e0dojbuldwbi8hlkle98m3supjzauduez2.png)
We can now solve this quadratic equationwith the quadratic equation formula;
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
Where the variables are;
![a=3,b=20,c=-87](https://img.qammunity.org/2023/formulas/mathematics/high-school/v4pcaqb19s7t5vqt4lkl2tu9aeeujx8hrm.png)
![w=\frac{-20\pm\sqrt[]{20^2-4(3)(-87)}}{2(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ktirorgvvwj12kco7lys0ldn6yb16nk1n9.png)
![w=\frac{-20\pm\sqrt[]{400+1044}}{6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rhp690g6dx7q6dqvpi9bu545bm8ewqyoi5.png)
![w=\frac{-20\pm\sqrt[]{1444}}{6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kpg3u4wj33jt1z52fsr9k5vcp3rydkg4z4.png)
![w=(-20\pm38)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wiea1ltz3nltct8iafer2j3pqcrul9d0js.png)
![w=(38-20)/(6),w=(-38-20)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/t6iopns3zsqii0jbporiv2w6sw6ns09b87.png)
![w=3,w=-9(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/u85wbvlsv7zzoh4jmatiu93jnuwevi4pdc.png)
We now have two solutions. We shall take the positive one since our side lengths cannot be a negative value.
Therefore having the width as 3, the length which is 3 times the width is 3 times 3 and that gives 9.
Therefore;
ANSWER:
![D\colon3\text{inches and 9 inches}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kaqho3q9uuupgy2rq0oz23wk29etb329r2.png)