We have that Stephon wants to reduce the width by 4, and we can represent this as follows:
![w=x-4](https://img.qammunity.org/2023/formulas/mathematics/college/7a6q8h8l243hnbh7hdxok3w8n75ckkyyrw.png)
And he wants to increase the length by 4:
![l=x+4](https://img.qammunity.org/2023/formulas/mathematics/college/nsowbmf66iifbhkstnvg7dwnwz888npbk9.png)
The square brick patio has an area of:
![A_{\text{squarepatio}}=20ft\cdot20ft=x\cdot x=400ft^2\Rightarrow x=20](https://img.qammunity.org/2023/formulas/mathematics/college/fcspbmp1cbq1ln18lzme77cyq5p7jvh7q1.png)
Therefore, the area of the new patio is given by:
![A=w\cdot l=(x-4)\cdot(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/xpst5pq6ghjy7wb3cv0li1l1kfoxtuavil.png)
Since x = 20, we have:
![A=l\cdot w=(20-4)ft\cdot(20+4)ft\Rightarrow A=16ft\cdot24ft\Rightarrow A=384ft^2](https://img.qammunity.org/2023/formulas/mathematics/college/tuv6h8j85ial84ydy066t9g3fbg0b8k3lt.png)
Therefore, the answer is A = 384 square feet (option C).