77.8k views
4 votes
The equation
f(x)=7a^(2+x)-b has an x-intercept equivalent to

A)
x=(logb-log7)/(loga)-2

B)
x=7a^(2)-b

C)
x=(y+b)/(7a^(2))

D)
x=0

I have the answer key so I know the answer. I just don't know how they got to the answer so please show your work.

1 Answer

2 votes

Answer:


\textsf{A)} \quad x=(\log b - \log 7)/( \log a)-2

Explanation:

Given function:


f(x)=7a^(2+x)-b

The x-intercepts occur when the function equals zero.


\implies 7a^(2+x)-b=0

Add b to both sides:


\implies 7a^(2+x)=b

Divide both sides by 7:


\implies a^(2+x)=(b)/(7)

Take logs of both sides of the equation:


\implies \log \left(a^(2+x)\right)= \log \left((b)/(7)\right)


\textsf{Apply the Power log law}: \quad \log_ax^n=n\log_ax


\implies (2+x)\log a= \log \left((b)/(7)\right)


\textsf{Apply the Quotient log law}: \quad \log_a(x)/(y)=\log_ax - \log_ay


\implies (2+x)\log a= \log b-\log 7

Divide both sides by log a:


\implies 2+x=(\log b - \log 7)/( \log a)

Subtract 2 from both sides:


\implies x=(\log b - \log 7)/( \log a)-2

User Mikael Couzic
by
4.0k points