GIVEN:
We are given a Fibonacci sequence as shown in the attached image.
Required;
To use the pattern derived to find the sum of the squares of the first 16 Fibonacci numbers.
Step-by-step solution;
We have a Fibonacci sequence whose first term is 1.
The sequence and the sum of the squares of a given number of terms is derived as follows;
![\begin{gathered} 1^2+1^2=1*2 \\ \\ 1^2+1^2+2^2=2*3 \\ \\ 1^2+1^2+2^2+3^2=3*5 \\ \\ 1^2+1^2+2^2+3^2+5^2=5*8 \\ \\ 1^2+1^2+2^2+3^2+5^2+8^2=8*13 \\ \\ 1^2+1^2+2^2+3^2+5^2+8^2+13^2=13*21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wq332qpe6xpuoc02tfejnvyqoeth6xd5rg.png)
Next, we determine the sequence from the 1st to 16th term as follows;
![\begin{gathered} 1^2+1^2+2^2+3^2+5^2+8^2+13^2+21^2+34^2+55^2+89^2 \\ \\ +144^2+233^2+377^2+610^2+987^2=987*1597 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n60a2rww21adocp6smniu1v4bhzjpjkrjc.png)
The sum of the squares of the first 16 terms therefore is
![987*1597=1,576,239](https://img.qammunity.org/2023/formulas/mathematics/college/pcfuiqf6qglbyyjdhm7ba870eqius7j7ld.png)
ANSWER:
![1,576,239](https://img.qammunity.org/2023/formulas/mathematics/college/14tyj3tzq369kszfmfpwwsjatbph6lnqi5.png)