14.3k views
1 vote
Calculate the following geometric sum. Round to three decimal places. (1.07)^18 + (1.07)^17 +...+ (1.07)^2 + (1.07) +1

Calculate the following geometric sum. Round to three decimal places. (1.07)^18 + (1.07)^17 +...+ (1.07)^2 + (1.07) +1-example-1

1 Answer

5 votes

Given:


a=(1.07)^(18);\text{ r=}(1)/(1.07)

The series power starts with 18 and ends in 0, n=19


S_n=(a(1-r^n))/(1-r)
S_(19)=((1.07)^(18)(1-((1)/(1.07))^(19)))/(1-(1)/(1.07))
S_(19)=((1.07)^(18)\lbrack1-0.2766\rbrack)/((1.07-1)/(1.07))
S_(19)=((1.07)^(18)\lbrack0.7234\rbrack)/((0.07)/(1.07))
S_(19)=(1.07)^(18)\lbrack0.7234\rbrack*(1.07)/(0.07)
S_(19)=(1.07)^(19)\lbrack10.3343\rbrack
S_(19)=(3.6165)(10.3343)
S_(19)=37.3709

User Mike Hopkins
by
4.5k points