1.
First, let's find a function that describes this situation.
Let:
t be the temperature of the measuring tape:
L(t) be the lengt of the tape
We'll have that:
![\begin{gathered} L(t)=30+(t-50)(30\cdot(0.00064)/(100)),t\ge50 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/43pv3heohu7u9zawnuzpb5sidxfx32h7mw.png)
Let's calculate L(100):
![\begin{gathered} L(100)=30+(100-50)(30\cdot(0.00064)/(100)) \\ \rightarrow L(100)=30.0096 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8byiy9s2fxrmuv5qyv2yhv3gsuzxuhq7hc.png)
The tape is now 0.0096ft longer
2.
To get the percent error, we divide the original lenght by the expanded lenght, substract that from 1, and multiply by 100:
![(1-(30)/(30.0096))\cdot100\rightarrow0.03](https://img.qammunity.org/2023/formulas/mathematics/college/3mhth2j1ztl5g78h0a1196n0hmefld7951.png)
The percent error is 0.03%