Given the function:
![f(x)=-7x^2+700x](https://img.qammunity.org/2023/formulas/mathematics/college/2v3hsmkdjqcc4v1cyvgwbpdcm2ov4e1r4o.png)
It is a parabola of the form:
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
Then the parameters of the given parabola are:
a = -7
b = 700
c = 0
We have that if a<0 then the vertex is a maximum value. In this case, a = -7, therefore the function has a maximum.
To find the maximum, we find the coordinate of the vertex, which is given by:
![x_(vertex)=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/blqkv2fr711bfgqo8kstmb9d6plig8quat.png)
Substitute a and b:
![x_(vertex)=-(700)/(2(-7))=-(700)/(-14)=50](https://img.qammunity.org/2023/formulas/mathematics/college/cjq20el7rk3aw9m7t45fq8rzepv6fjfun2.png)
And we find y for the vertex:
![\begin{gathered} y_(vertex)=-7(50)^2+700(50)=-7(2500)+35000=-17500+35000 \\ =17500 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b5jiq4l1g3qhkghq8rih1kfcokfnqvpr97.png)
The vertex of the parabola is: (50, 17500) therefore the maximum is (50, 17500)
Answer:
maximum: (50, 17500)
minimum: none