93.7k views
1 vote
Solve the inequality 11x+4(x-2)<5x+2 and write the solution in interval notation

User Cactus
by
8.4k points

1 Answer

5 votes

The inequality given is


11x+4\mleft(x-2\mright)<5x+2

Step 1: Expand the bracket


\begin{gathered} 11x+4\mleft(x-2\mright)<5x+2 \\ 11x+4x-8<5x+2 \end{gathered}

Step 2: collect similar terms


\begin{gathered} 11x+4x-8<5x+2 \\ 15x-8<5x+2 \end{gathered}

Step 3: Add 8 to both sides


\begin{gathered} 15x-8<5x+2 \\ 15x-8+8<5x+2+8 \\ 15x<5x+10 \end{gathered}

Step 4: Substract 5x from both sides


\begin{gathered} 15x<5x+10 \\ 15x-5x<5x+10-5x \\ 10x<10 \end{gathered}

Step 5: Divide both sides by 10


\begin{gathered} (10x)/(10)<(10)/(10) \\ x<1 \end{gathered}

Hence,


\begin{bmatrix}\mathrm{Solution\colon}\: &amp; \: x<1\: \\ \: \mathrm{Interval\: Notation\colon} &amp; \: \mleft(-\infty\: ,\: 1\mright)\end{bmatrix}\text{ }

Therefore,

The solution = x<1

The interval notattion = (-∞,1)

User Dycey
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories