The number of different combinations of k elements in a set of n elements, is:
![(n!)/(k!(n-k)!)](https://img.qammunity.org/2023/formulas/mathematics/high-school/q53ugamqx03fczs8ioa2esga02q5nyjn3g.png)
If we want to select three players from a group of 9 students, then the amount of different teams will be given by:
![\begin{gathered} (9!)/(3!(9-3)!)=(9!)/(3!\cdot6!) \\ =(9\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2)/(3\cdot2\cdot6\cdot5\cdot4\cdot3\cdot2) \\ =(9\cdot8\cdot7)/(3\cdot2) \\ =(9)/(3)\cdot(8)/(2)\cdot7 \\ =3\cdot4\cdot7 \\ =84 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l0ezvnsk2gnssuy3titlyj5y408mqt1txu.png)
Therefore, the total amount of different teams that can be selected, is:
![84](https://img.qammunity.org/2023/formulas/mathematics/high-school/amlcckl3wzww3g9ekhp2nvwvalnowo3o2u.png)