156k views
3 votes
A sample of 14 randomly selected commuters in Chicago had an average commuting time of 39 minutes, with a standard deviation of 9.4 minutes. Find the lower limit of the 99% confidence interval of the true (population) mean. Round your answer to one place after the decimal point.

A sample of 14 randomly selected commuters in Chicago had an average commuting time-example-1
User Chuck M
by
3.8k points

1 Answer

5 votes

Given the confidence interval formular


\begin{gathered} CI=\bar{x}\pm MOE \\ \bar{x}\Rightarrow\operatorname{mean} \\ \text{MOE}\Rightarrow\text{Margin of error} \\ CI=\text{confidence interval} \end{gathered}

Calculate the Margin of error


\begin{gathered} \text{MOE}=\text{Critical value }* SE \\ \text{where} \\ SE=\frac{\sigma}{\sqrt[]{n}} \\ \sigma=9.4 \\ n=14 \end{gathered}
SE=\frac{9.4}{\sqrt[]{14}}=(9.4)/(3.7417)=2.5122
C.V\text{ for 99\% confidence significant level =}2.58

Thus, the margin of error is


\begin{gathered} \text{MOE}=CV* SE \\ =2.58*2.5122 \\ =6.48 \end{gathered}

The confidence interval from the confidence interval formula will be


\begin{gathered} CI=\bar{x}\pm MOE \\ =39\pm6.48 \\ =32.52<39<45.48 \end{gathered}

Hence, the lower limit of the confidence interval will be 32.52

User Max Brodin
by
3.7k points