Step 1
Let the first consecutive integer be n
Then the second will be n+1
The third will be n+2
Step 2
Write an inequality for the problem
![n+n+1+n+2\leq15](https://img.qammunity.org/2023/formulas/mathematics/high-school/9ajori3sc7lz3nvhkuxlckqwgwygi0qwv1.png)
Step 3
Solve the inequality
![\begin{gathered} 3n+3\leq15 \\ 3n\leq15-3 \\ 3n\leq12 \\ (3n)/(3)\leq(12)/(3) \\ n\leq4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/el7po73pvia0xzktfndq486s3led1q1ve4.png)
Step 4
Find the possible set of three integers to satisfy the inequality.
![\begin{gathered} n=4---\text{ first integer} \\ n+1=4+1=5---\text{ second integer} \\ n+2=4+2=6---\text{ Third integer} \\ \text{check} \\ 4+5+6\leq15 \\ \text{Hence the set of thr}ee\text{ integers are; }\mleft\lbrace4,5,6\mright\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ysn5tziuge2jwji0buf4ozjs8ddkr7nckn.png)
One possible set of three integers that satisfy the inequality is;
{4,5,6}