Given:
The expression for arithmetic expression is given as,
![a_(76)=375](https://img.qammunity.org/2023/formulas/mathematics/college/dr3frrzcsydqw28iw2yk85goymf1b4j3e2.png)
The common difference is d = 4.8.
The objective is to find the first term of the series.
Step-by-step explanation:
The general formula for the nth term of an arithmetic progression is,
![a_n=a+(n-1)d\text{ . . . . .(1)}](https://img.qammunity.org/2023/formulas/mathematics/college/ctuf3tzxmbvtycllo45cr83oeybbsgjjyt.png)
Here, n represents the number of terms, a represents the first term
By comparing the given expression with equation (1),
![n=76](https://img.qammunity.org/2023/formulas/mathematics/college/tq4l30cpq47aeztuz1k5b48q5b8k2rtc0m.png)
To find a:
On plugging the given values in equation (1),
![375=a+(76-1)4.8](https://img.qammunity.org/2023/formulas/mathematics/college/n185bh6i3ntzivxf3pw8mqttbi7fr5f7zr.png)
On further solving the above equation,
![\begin{gathered} 375=a+(75)4.8 \\ 375=a+360 \\ a=375-360 \\ a=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3lwg5f1rewu2zy6qmbyqs6we0rnlim575o.png)
Hence, the first term of the arithmetic sequence is 15.