A) Given:
![\begin{gathered} x^2+y^2=17\ldots\ldots\ldots\text{.}(1) \\ y=-(1)/(2)x\ldots\ldots\ldots\ldots(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t98ofm3q6zo3jmp6xnupack5b3l9m3c5uo.png)
To find: The number of real solutions
Step-by-step explanation:
Substitute equation (2) in (1), we get
![\begin{gathered} x^2+(-(1)/(2)x)^2=17 \\ x^2+(x^2)/(4)=17 \\ (5x^2)/(4)=17^{} \\ x^2=(68)/(5) \\ x^2-(68)/(5)=0\ldots\ldots.(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dinedlinjrwl586bgg4k6sqsw4nwuhs50m.png)
Here,
![a=1,b=0,\text{ and c=-}(68)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/e9c6yg9wa4d2auztayi344w07gyyf54xi0.png)
So, the discriminant is,
![\begin{gathered} \Delta=b^2-4ac \\ =0-4(1)(-(68)/(5)) \\ =54.4 \\ >0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x6vg0uoxpmc63xsaycu3a31zztgch0mgc6.png)
Since the discriminant is greater than zero.
Hence, it has two real solutions
Final answer:
System A has two real solutions.