To find the pair of functions that are inverses of each other, we should check through the options.
Option A

First, we set f(x) = y. Thus:

Then, we swap the variables:

Make y the subject of formula:

But:

Hence, option A is incorrect
Option B
![\begin{gathered} f(x)\text{ =}\frac{\sqrt[3]{x}}{6} \\ g(x)=6x^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/x538gbq1s7tjt2cgbz0pzpb8eboyelbjt1.png)
Set f(x) = y. Thus:
![y\text{ = }\frac{\sqrt[3]{x}}{6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w0n36qyyevo182alc1n7xs7e2xha8za7ze.png)
Swap the variables:
![x\text{ = }\frac{\sqrt[3]{y}}{6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pu2yo1bd3z4ncc8xkxgwcgbrada9i5cpgm.png)
Make y the subject of the formula:
![\begin{gathered} 6x\text{ = }\sqrt[3]{y} \\ \text{Cube both sides} \\ (6x)^3\text{ = y} \\ y\text{ = }216x^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pypulrbmngp3mbhntyh2zqvzld9k2b5c8t.png)
But:

Hence, Option B is incorrect
Option C:

Set f(x) = y. Thus:

Swap the variable:

Make y the subject of formula:

But :

Hence, option C is correct
Option D

Set y =f(x). Thus:

Swap the variables:

Make y the subject of formula:
![undefined]()