10.3k views
3 votes
Find the exact value of x in the figure. 30° 36 450

Find the exact value of x in the figure. 30° 36 450-example-1

1 Answer

4 votes

The triangle is,

Using trigonometric equations for right triangle ACB,


\begin{gathered} \cos 30^(\circ)=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos 30^(\circ)=(y)/(36) \\ 36*\cos 30^(\circ)=y \\ 36*\frac{\sqrt[]{3}}{2}=y \\ 18\sqrt[]{3}=y \end{gathered}

Using trigonometric equations for right triangle ACD,


\begin{gathered} \tan 45^(\circ)=\frac{\text{opposite side}}{adjacent\text{ side}} \\ \tan 45^(\circ)=(y)/(x) \\ x=(y)/(\tan45^(\circ)) \\ x=\frac{18\sqrt[]{3}}{1} \\ x=18\sqrt[]{3} \\ \text{Therefore, the value of x is }18\sqrt[]{3} \end{gathered}
Find the exact value of x in the figure. 30° 36 450-example-1
User Dmitry  Skryabin
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories