Step-by-step explanation:
Let's call A the ounces of solution A and B the ounces of solution B.
If the scientist wants to obtain 120 ounces, then:
A + B = 120
On the other hand, the final mixture should be 60% salt and solution A is 30% salt and solution B is 80% salt, so:
0.6(A + B) = 0.3A + 0.8B
So, we can solve for A as:
![\begin{gathered} 0.6(A+B)=0.3A+0.8B_{}_{} \\ 0.6A+0.6B=0.3A+0.8B \\ 0.6A+0.6B-0.3A=0.3A+0.8B-0.3B \\ 0.3A+0.6B=0.8B \\ 0.3A+0.6B-0.6B=0.8B-0.6B \\ 0.3A=0.2B \\ (0.3A)/(0.3)=(0.2B)/(0.3) \\ A=(2)/(3)B \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fnm0my4bjecy7rmlaijhaoozkimb21wdfc.png)
Then, replacing A by (2/3)B on the first equation, we get:
![\begin{gathered} A+B=120 \\ (2)/(3)B+B=120 \\ (5)/(3)B=120 \\ 3\cdot(5)/(3)B=3\cdot120 \\ 5B=360 \\ (5B)/(5)=(360)/(5) \\ B=72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hb5hf6apusmvlb1fxusn72srgonlnqv159.png)
Finally, A is equal to:
![\begin{gathered} A=(2)/(3)B \\ A=(2)/(3)(72) \\ A=48 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7l5u2w1bog95xauhkpka5pydapem796mse.png)
Therefore, she should use 48o
Let[