Given the equation of a line:
![y\text{ - 4 = }(2)/(3)\text{ (x - 3)}](https://img.qammunity.org/2023/formulas/mathematics/college/8hsykis1vf9u3abnkf83xds5grkfue7un8.png)
Step 1: Obtain the slope of the given line
Writing this equation in the standard slope-intercept form, we will obtain the following
![\begin{gathered} y\text{ - 4 = }(2)/(3)x\text{ - }(2)/(3)*3 \\ \\ y\text{ - 4 =}(2)/(3)x\text{ - 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8q2pnwlz6cqphh7lm3l6j83hb7c405ziu8.png)
![y\text{ =}(2)/(3)x\text{ - 2+ 4}](https://img.qammunity.org/2023/formulas/mathematics/college/ez9m66u9g1c6spnidxgok2kiu4pzahises.png)
![y\text{ = }(2)/(3)x\text{ + 2}](https://img.qammunity.org/2023/formulas/mathematics/college/bwf5m20y15zdyed5u45w34fsxh6s3h2ybl.png)
If we compare this to y = mx + b, where m is the slope and b the intercept
the slope of the line is
![(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zeht2hdwlb899wfchg7j67j4mj43o3xc1c.png)
Step 2: Getting the equation of the line,
The equation of a line given a slope is given by
![\text{slope = }(y-y_1)/(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/oasvx7vu7jsxp3vszw4194c5j2f7vwgvmi.png)
where x1 and y1 are the coordinates of the points parallel, in this case
x1 =1, y1 = -2
![(2)/(3)\text{ =}\frac{y-\text{ (-2)}}{x\text{ -1}}](https://img.qammunity.org/2023/formulas/mathematics/college/ah4nausyqy2pe8ud9jusdej1hhgcjit0dz.png)
![(2)/(3)\text{ =}\frac{y\text{ +2}}{x\text{ - 1}}](https://img.qammunity.org/2023/formulas/mathematics/college/x7ms14y9mikl1mjoebcjjasnyuw2ntwaaq.png)
Cross multiplying
2 (x - 1) = 3 (y +2)
expand the parenthesis
2x - 2 = 3y + 6
3y = 2x -2 -6
3y = 2x - 8
Divide both sides by 3
![y\text{ = }(2)/(3)x\text{ - }(8)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/28w7xsz4mv78yz29f6u2m41ch7pff42y88.png)
Answer is y = 2x/3 - 8/3