Given
Solve using completing the square

Step 1
Keep x terms on the left and move the constant to the right side
by subtracting it on both sides

Step 2
Take half of the x term and square it

Step 3
Then add the result (16) to both sides

Step 4
Rewrite the perfect square on the left

and combine terms on the right

Step 5
Take the square root of both sides
![x-4=\pm\sqrt[]{12}](https://img.qammunity.org/2023/formulas/mathematics/college/bc4zjthu4zjwfn6ufdbji0yl6tawpqzltp.png)
Simplify the Radical
![x-4=\pm2\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/rt1cmrbh91u61vpp16vmgzh8s058ftwbou.png)
Step 6
Isolate the x on the left side and
solve for x
![x=4\pm2\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/90gjx1i0gky7bhk8ahoez9b47l39tqvkvx.png)
therefore
![\begin{gathered} x=4+2\sqrt[]{3} \\ \\ x=4-2\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gzptg7ks4vved275r0lxzdqdid70kki14l.png)
which becomes
x = 7.4641
x = 0.535898