![(52)/(90)=0.578](https://img.qammunity.org/2023/formulas/mathematics/college/5pnor5no7vx39qjwhcntfq65hlblpj0sh6.png)
![\begin{gathered} 0.578\pm2.576\sqrt[]{((0.578)(1-0.578))/(90)}=0.578\pm0.13411 \\ (0.44,0.71) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mh9khglchwbj79i9c2nu781emr557yj6vd.png)
The answer is this:
![(0.44389,0.71211)](https://img.qammunity.org/2023/formulas/mathematics/college/wj999aqgsmpj3frvrocui3zp7ozdiwacxw.png)
But we have to round those numbers to the nearest hundredth (two decimal places), so:
![\begin{gathered} 0.44389\approx0.44 \\ 0.71211\approx0.71 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4iiyrm6t8m56kz2v32xkyp8nn5l1s07o2b.png)
Therefore, the answer is :
![(0.44,0.71)](https://img.qammunity.org/2023/formulas/mathematics/college/ch5m8lzbqxdulaacqolc14aa6g8nezo6ax.png)
a confidence interval for a population proportion is given by:
![\begin{gathered} p\pm Zc\sqrt[]{(p\cdot(1-p))/(n)} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tw65hhzprnbvtrz7egloaykncv97c4f6d7.png)
Some common confidence levels are:
![\begin{gathered} 90\colon Zc\approx1.645_{} \\ 95\colon Zc\approx1.960 \\ 99\colon Zc\approx2.576 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e5gz4s9dzr2vdnb7eq50bcx32m3oh1nft2.png)
In this case:
![\begin{gathered} n=\text{ Sample size=90} \\ p=\text{proportion of females}=(52)/(90)\approx0.578 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sobwar685q3lqt50mczpo33xlzp73xivlg.png)
You replace those values into the equation, and you can find the confidence interval