As given by the question
There are given that the point:
![\begin{gathered} P=(3,\text{ 3)} \\ Q=(9,\text{ -6)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/byhs5h0k0jn9etc6ary1h6f48muta8cw64.png)
Now,
From the distance formula:
![PQ=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/svc87n1rvqhtpwsuqrjknc2mcj1sfdh1bz.png)
Then,
![\begin{gathered} PQ=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ PQ=\sqrt[]{(9_{}-3_{})^2+(-6_{}-3_{})^2} \\ PQ=\sqrt[]{(6)^2+(-9_{})^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yd9ajikauf2kyjnshovplxviyqu27xkmu6.png)
Then,
![\begin{gathered} PQ=\sqrt[]{(6)^2+(-9_{})^2} \\ PQ=\sqrt[]{36^{}+81^{}} \\ PQ=\sqrt[]{117} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/m0500l89itfv8ars34pjnu9idg54g9mio4.png)
Now,
![\sqrt[]{3}PQ=\sqrt[]{3}*\sqrt[]{117}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l1frj4xhvx0in1d3pyu79ybb9z08oavxcc.png)
Then,
![\begin{gathered} \sqrt[]{3}PQ=\sqrt[]{3}*\sqrt[]{117} \\ =\sqrt[]{3}*3\sqrt[]{13} \\ =3\sqrt[]{39} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ee60pnww2i7e5xedgjm6qif1px75rq7ffi.png)
Hence, the answer is shown below:
![3\sqrt[]{39}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j0xk918e6poo9hgf0k97lpvo1g62h1mmiy.png)
Now,
From the formula to find the direction angle:
![\tan \theta=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bojms93km22jmud15lqq9qwnw76fzl7k9o.png)
Then,
![\begin{gathered} \tan \theta=(y_2-y_1)/(x_2-x_1) \\ \tan \theta=\frac{-6_{}-3_{}}{9_{}-3_{}} \\ \tan \theta=\frac{-9_{}}{6_{}} \\ \theta=\tan ^(-1)(-(3)/(2)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/j58zaioe8go7fjcatqoa0s17llfwskofx1.png)
Then,
![\begin{gathered} \theta=\tan ^(-1)(-(3)/(2)) \\ \theta=-56.31^(\circ)+180^(\circ) \\ \theta=123.7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9lwrpuon9b3ng1rjfkcuppqzrc1ua1hu6x.png)
And
The magnitude of the point is:
![\begin{gathered} \lvert PQ\rvert=\lvert\sqrt[]{117}\rvert \\ \lvert PQ\rvert=\sqrt[]{117} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/phn9w6rjc3nomz7m4m981nm8olcoxaivdl.png)
Hence, the value of direction angle and magnitude is shown below:
![\begin{gathered} \text{Direction angle=}\theta=123.7^(\circ)^{} \\ \text{Magnitude}=\sqrt[]{117} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/n2rknngwtdezxkap3sd0m0waqx32b90x1h.png)