We are given a right triangle and we are asked to determine the length of the hypotenuse. To do that we will use the Pythagorean theorem:
![h^2=a^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/college/csrkkjnil7mls8v3u35payfuggwpegpfsz.png)
Where "h" is the hypothenuse and a and b the other two sides. In this case, the two sides are equal since the triangle is 45 - 45 - 90. We have the following values:
![\begin{gathered} a=6 \\ b=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y9xfd9o2ojzb3tkoathv43oc55uq4pbe44.png)
Substituting:
![h^2=(6)^2+(6)^2](https://img.qammunity.org/2023/formulas/mathematics/college/5jn6dcuu4o1d2ds6lzz4oc50pwufl38phw.png)
Solving the operations:
![\begin{gathered} h^2=36+36 \\ h^2=2(36) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8l11kkwaa42zg3w7o6qp2cj2rk6wwqw7qp.png)
Taking square root to both sides:
![h=\sqrt[]{2(36)}](https://img.qammunity.org/2023/formulas/mathematics/college/kmk6kw5xo12zqsud12d8jats25hqhpd5vd.png)
Now we will use the following property:
![\sqrt[]{ab}=\sqrt[]{a}*\sqrt[]{b}](https://img.qammunity.org/2023/formulas/mathematics/college/r9xipxhuy4gpmhkh1xny2zqu44ilr6nseu.png)
Applying the property:
![h=\sqrt[]{2}*\sqrt[]{36}](https://img.qammunity.org/2023/formulas/mathematics/college/fab7cvhfnmqtaj4xckez46k2ck6nkw1b7k.png)
Solving the operations:
![h=6\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/8vjelu1wc929xzuuxtc5jjg49258adwzo9.png)
And thus we have found the hypothenuse in its most simplified form.