Let's start by copying the equation:
![-5\cos ^2(x)+4\cos (x)+1=0](https://img.qammunity.org/2023/formulas/mathematics/college/37wrdketacpwen0yf1w4tg7ne6lxy4tsc5.png)
To make it easier to see, let's substitute cos(x) by "u":
![-5u^2+4u+1=0](https://img.qammunity.org/2023/formulas/mathematics/college/q5dri8wejog87ogk7ggsw047na5rdw4d64.png)
To find the values of "u", we can use Bhaskara's Equation:
![\begin{gathered} u=\frac{-4\pm\sqrt[]{4^2-4\cdot(-5)\cdot1}}{2\cdot(-5)} \\ u=\frac{-4\pm\sqrt[]{16+20}}{-10} \\ u=\frac{-4\pm\sqrt[]{36}}{-10} \\ u=(-4\pm6)/(-10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yelx6hykcu6umrpo05use13iu2qgqeiqwc.png)
![\begin{gathered} u_1=(-4+6)/(-10)=(2)/(-10)=-0.2 \\ u_2=(-4-6)/(-10)=(-10)/(-10)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eknako3sozj6dzucee6jjohesfs36yl7xg.png)
Now, let's substitute cos(x) back:
![\begin{gathered} \cos (x_1)=-0.2 \\ \cos (x_2)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xmehpznw3d00foq8x3lyoad7ybh4hcz27v.png)
Since it is a trigonometric solution, we have repeating values of "x" that satisfy each equation above.
The first, the one you already got, comes from
![\begin{gathered} \cos (x)=1 \\ x=0+2\pi k \\ x=2\pi k \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3bupa205kp58ti2icegalq61ytxx7yausd.png)
The smallest non negative is for k = 0 which gives
![x=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/fbdfo5wsa562jve9mar3rnrxezpj37nli7.png)
The next following this part would be for k = 1, which gives:
![x=2\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/k6wphdjrcxwc3ri8bvkptecbqz23ogg9e4.png)
However, we have another equation for solutions:
![\cos (x)=-0.2_{}](https://img.qammunity.org/2023/formulas/mathematics/college/g0pngdqdrbxdon9szdye0iqp0n8sym3ryy.png)
For this equation, the smallest "x" value can be found using arc-cossine of -0.2 in a calculator, which gives:
![\begin{gathered} x=\arccos (-0.2) \\ x=1.772\ldots \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v9z37b64glf2tdeg7agsnquj617bnvgpi5.png)
This is the next non-negative solution for the equation, because it is smaller than the other we found.
So the second part is x = 1.772.