The acceleration of the car can be given as,
![a=(F)/(m)](https://img.qammunity.org/2023/formulas/physics/college/mpfffitkiv7h4l9a1o3ofi9n7bjtg5qhq0.png)
Plug in the known values,
![\begin{gathered} a=\frac{3000\text{ N}}{1000\text{ kg}}(\frac{1kgm/s^2}{1\text{ N}})_{} \\ =3m/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/rkeb6zi51ieshuwp2hv1wkrcrin5ma1jmz.png)
The net force which acts on the car is,
![F=ma](https://img.qammunity.org/2023/formulas/physics/high-school/f29csqfwijobd1j24f6y6vv1aba7x8qmg1.png)
The frictional force acting on the car is,
![f=\mu_kmg](https://img.qammunity.org/2023/formulas/physics/college/q8lp86uq5t8m2hk3n56s1wepp9ba1wnbb4.png)
The net force is balanced by the frictional force which can be solved as,
![\begin{gathered} \mu_kmg=ma \\ \mu_k=(a)/(g) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gmruzrbyphyg4mh3u7uqf81e2hnu14yk1c.png)
Substitute the known values,
![\begin{gathered} \mu_k=(3m/s^2)/(9.8m/s^2) \\ =0.306 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/eg0h1x5niwqgg74maw88rjccennzlznmqt.png)
Thus, the coefficient of kinetic friction is 0.306.