ANSWER
Point D
Step-by-step explanation
The distance between two points (x₁, y₁) and (x₂, y₂) is given by the Pythagorean Theorem,
![d=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/87agft4bkj7u5ow4h8vn3yzn1g00q311fw.png)
Let's find the distance between points A and B,
![d_(AB)=\sqrt[]{(1-4)^2+(1-4)^2}=\sqrt[]{(-3)^2+(-3)^2}=\sqrt[]{9+9}=\sqrt[]{18}\approx4.2](https://img.qammunity.org/2023/formulas/mathematics/college/ho38ulpc85xjt4liptf1b8djbj26cbw4wm.png)
The distance between points A and C is,
![d_(AC)=\sqrt[]{(1-(-3))^2+(1-4)^2}=\sqrt[]{(4)^2+(-3)^2}=\sqrt[]{16+9}=\sqrt[]{25}=5](https://img.qammunity.org/2023/formulas/mathematics/college/cmquc16qj3mbv9ztnjdskh1d6y4mbr7997.png)
And the distance between points A and D is,
![d_(AD)=\sqrt[]{(1-(-4)^2+(1-(-4)^2}=\sqrt[]{(1+4)^2+(1+4)^2}=\sqrt[]{(5)^2+(5)^2}=\sqrt[]{25+25}=\sqrt[]{50}\approx7.1](https://img.qammunity.org/2023/formulas/mathematics/college/li3o6hgy8ugk7obuqfifng1pfdcpyg153i.png)
Hence, point D is at approximately 7.1 units from point A.