Answer:
![\begin{gathered} a)\text{ Volume = 1230.88 units}^3 \\ b)\text{ lateral ssurface = 549.5 units}^2\text{ } \\ c)\text{ }Total\text{ surface area of cone = 703.36 unit}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bf9hxs1b92s2ajvlf486ryxgzbq7r860vl.png)
Step-by-step explanation:
Given:
AB = 14
SO = 24
To find:
a) the volume
b) the area of the lateral surface
c) the total surface area
a) To find the volume of the cone, we will use the formula:
![Volume\text{ of a cone = }(1)/(3)πr²h](https://img.qammunity.org/2023/formulas/mathematics/college/byisa9nuxt67iufu5y058jphm2arqviap8.png)
r = radius
diameter = AB = 14
diameter = 2(radius)
radius = diameter/2 = 14/2
radius = 7
height = SO = 24
let π= 3.14
![\begin{gathered} Volume\text{ of the cone = }(1)/(3)*3.14*7^2*24 \\ Volume\text{ of the cone = 1230.88 unit}^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7nbrdj2axm2am4dh88pmc9855940x8rz6w.png)
b) To get the lateral surface, we will apply the formula:
![\begin{gathered} lateral\text{ surface of the cone = \pi rl} \\ where\text{ l = }√(h^2+r^2) \end{gathered}]()
![\begin{gathered} Lateral\text{ surface of the cone = 3.14 }*7*√(7^2+24^2) \\ \\ Lateral\text{ surface area of the cone = 549.5 units}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5o2nxxn8vqrcmjf80zae1zrfue1ypm79jm.png)
c) The total surface area formula:
![\begin{gathered} Total\text{ surface area of cone = Area of base + lateral surface area} \\ \\ Total\text{ surface area = \pi r}^2\text{ + \pi rl} \\ \\ Total\text{ surface area = \lparen3.14 }*\text{ 7}^2)\text{ + 549.5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cfcq6eim01d1t9z9r57nqckgjk1du4yjip.png)
![Total\text{ surface area of cone = 703.36 unit}^2](https://img.qammunity.org/2023/formulas/mathematics/college/78cce3oz71qdnkuzw1u8g4dhyyw7mp0345.png)