105k views
0 votes
1 Select the correct answer. What is the value of x? sin(4.1-10)° = cos(40-x) OA. 10 OB. r = 20 Ос. r = 50 OD 1=17

1 Select the correct answer. What is the value of x? sin(4.1-10)° = cos(40-x) OA. 10 OB-example-1
User Boggio
by
8.6k points

1 Answer

4 votes

B. x=20

Step-by-step explanation


\sin (4x-10)=\cos (40-x)

by definition


\sin (\emptyset)=\cos (90-\emptyset)

Step 1

let


\begin{gathered} \emptyset=4x-10 \\ 90-\emptyset=40-x \\ so \\ \sin (4x-10)=\cos (90-(4x-10)) \\ \sin (4x-10)=\cos (90-4x+10) \\ \sin (4x-10)=\cos (100-4x) \\ \text{Also} \\ \sin (4x-10)=\cos (40-x) \\ \text{hence} \\ \cos (40-x)=\cos (100-4x) \\ 40-x=100-4x \\ \text{add x in both sides} \\ 40-x+x=100-4x+x \\ 40=100-3x \\ 40-100=-3x \\ -60=-3x \\ x=(60)/(3) \\ x=20 \end{gathered}

Let's check every option

A)


\begin{gathered} \sin (4x-10)=\cos (40-x) \\ x=10 \\ \sin (4\cdot10-10)=\cos (40-10) \\ \sin (30)=\cos (30)\rightarrow false \end{gathered}

B)


\begin{gathered} \sin (4x-10)=\cos (40-x) \\ x=20 \\ \sin (4\cdot20-10)=\cos (40-20) \\ \sin (70)=\cos (20) \\ 70=90-20\rightarrow\text{true} \end{gathered}

C)


\begin{gathered} \sin (4x-10)=\cos (40-x) \\ x=50 \\ \sin (4\cdot50-10)=\cos (40-50) \\ \sin (190)=\cos (-10) \\ 190=90-(-10)\rightarrow\text{false} \end{gathered}

D)


\begin{gathered} \sin (4x-10)=\cos (40-x) \\ x=17 \\ \sin (4\cdot17-10)=\cos (40-17) \\ \sin (58)=\cos (23) \\ 58=90-23\rightarrow\text{false} \end{gathered}

therefore, the answer is

B. x=20

User Peter Ehrlich
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories