Let us start by writing out the coordinates given,
![\begin{gathered} \text{The coordinates are written in the form, (x,y)} \\ A(6,10) \\ B(-2,6) \\ C(2,-4) \\ D(-4,8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/82jbaj6u6tukph3p1yfbb3bksr8vg5aigo.png)
The new coordinates of the transformation after it is reflected over the y-axis
is written below:
![\begin{gathered} \text{The rule for a reflection over the y-axis is (x,y)}\rightarrow(-x,y) \\ A^(\prime)\text{(-6,10)} \\ B^(\prime)(2,6) \\ C^(\prime)(-2,-4) \\ D^(\prime)(4,8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/goni3eyktd02u6s9pktxrdoxs27vuor28f.png)
The point is then dilated by a scale factor of 4, which means we need to multiply each coordinate by 4.
![\begin{gathered} \text{For coordinate A'}\rightarrow\text{ 4(-6,10)= (-24, 40)} \\ \text{For coordinate B'}\rightarrow\text{ 4(2, 6)= (8, 24)} \\ \text{For coordinate C'}\rightarrow\text{ 4(-2,-4)= (-8, -16)} \\ \text{For coordinate D'}\rightarrow\text{ 4(4, 8)= (16, 32)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dtegoimqouqbpuu8w87ycouq1g8sxpsz0h.png)