Given the following expression:
![\mleft(x+2\mright)(-4x^2+3x-9+x^4)](https://img.qammunity.org/2023/formulas/mathematics/college/83o94m9agbzt4mtmy3azxf501bp5o367wy.png)
Let's simplify;
Applying the PEMDAS Rule (Parenthesis, Exponent, Multiplication, Division, Addition and Subtraction).
Step 1: Simplify first the equation within the parenthesis.
![(x+2)(-4x^2+3x-9+x^4)](https://img.qammunity.org/2023/formulas/mathematics/college/h3yagdswg0zkanagcid74x5pt0sf825wkm.png)
![(x+2)\text{ = (x + 2) ; already in simplified form}](https://img.qammunity.org/2023/formulas/mathematics/college/dpy6n3vpyz4vafam8yilm3w8gl7qsonyfi.png)
![(-4x^2+3x-9+x^4)\text{ = }(x^4-4x^2+3x-9)\text{ ; already in simplified form}](https://img.qammunity.org/2023/formulas/mathematics/college/mgw95vpkfp1vjp3c99ap0qn15qqra8utyx.png)
Step 2: Proceed with the multiplication.
![(x+2)(x^4-4x^2+3x-9)\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/q2d73yl2jhb9bhupe7hcl52qrivo49z7xe.png)
![(x)(x^4-4x^2+3x-9)\text{ = }\mleft(x^4\mright)\mleft(x\mright)-(4x^2)(x)+(3x)(x)-(9)(x)=x^5-4x^3+3x^2\text{ - 9x}](https://img.qammunity.org/2023/formulas/mathematics/college/7n5wz3uonu11ctlaj6qd6ykzlvbxbllkgz.png)
![(2)(x^4-4x^2+3x-9)\text{ = }(x^4)(2)-(4x^2)(2)+(3x)(2)-(9)(2)=2x^4-8x^2+6x-18](https://img.qammunity.org/2023/formulas/mathematics/college/442fyngav3g825pvm9oyuzjcdk6ldychj0.png)
Step 3: Let's add the product of x and 2 being multiplied to -4x^2+3x-9+x^4.
![(x+2)(x^4-4x^2+3x-9)\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/q2d73yl2jhb9bhupe7hcl52qrivo49z7xe.png)
![(x)(x^4-4x^2+3x-9)\text{ + }(2)(x^4-4x^2+3x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/5l4kr1vuim3bbq0hgtdaxuy31mahkkrews.png)
![(x^5-4x^3+3x^2\text{ - 9x) + }(2x^4-8x^2+6x-18)](https://img.qammunity.org/2023/formulas/mathematics/college/snssfu4rgqbf94x6hnnf8qc7et58h2u9s5.png)
![x^5-4x^3+3x^2\text{ - 9x + }2x^4-8x^2+6x-18](https://img.qammunity.org/2023/formulas/mathematics/college/2wxnzmbhnsbn6104prj9tg711x0xoy3eu2.png)
![x^5\text{+ }2x^4-4x^3+3x^2\text{ }-8x^2\text{- 9x }+6x-18](https://img.qammunity.org/2023/formulas/mathematics/college/ycmkljwc8nn4vxe41ea0fkqi224rg75iox.png)
![x^5\text{+ }2x^4-4x^3-5x^2\text{-3x}-18](https://img.qammunity.org/2023/formulas/mathematics/college/vahfxoj1tsclu60w3oaozrtqq8n7l2ra3q.png)
Therefore, the product of (x+2) (-4x^2+3x-9+x^4) is x^5 + 2x^4 -4x^3 -5x^2 -3x - 18.