Step-by-step explanation
Given
![g(x)=(x)/(x^2-49)](https://img.qammunity.org/2023/formulas/mathematics/college/ggffaj7zb227kyveg5j5kkuk1v57vpu8lo.png)
The domain of the function is the set of x values that will make the function defined. This is given below.
Using the denominator, we will find the point of singularity.
![\begin{gathered} x^2-49=0 \\ x^2=49 \\ x=7,x=-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zmyfhd2nku0z7mvirgq9ikq8uxc5w6jpix.png)
Therefore, the points of singularities are 7 and -7. Hence we will exclude those points from the set of real numbers.
Answer:
![(-\infty-7)\cup(-7,7)\cup(7,\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/kfggew54b0d4fnggywh1dlpc3f45zbtz4r.png)