We are going to divide in three parts to find the volume, so the first parte is the rigth one where we have the last step.
![\begin{gathered} V_1=(45\operatorname{cm})\cdot(100\operatorname{cm})\cdot(100\operatorname{cm}) \\ =450000cm^3=4500m^3 \end{gathered}]()
Because we have to take acount the base of the steps not just the steps, now for the second step we have
![\begin{gathered} V_2=(30\operatorname{cm})\cdot(100\operatorname{cm})\cdot(25\operatorname{cm}) \\ =75000cm^3=750m^3 \end{gathered}]()
![\begin{gathered} V_2=(30\operatorname{cm})\cdot(100\operatorname{cm})\cdot(25\operatorname{cm}) \\ =75000cm^3=750m^3 \end{gathered}]()
![\begin{gathered} V_3=(15\operatorname{cm})\cdot(100\operatorname{cm})(25\operatorname{cm}) \\ =37500cm^3=375m^3 \end{gathered}]()
So the total volume is

The answer is 5625 m3.
And for the fist step we have
![\begin{gathered} V_3=(15\operatorname{cm})\cdot(100\operatorname{cm})(25\operatorname{cm}) \\ =37500cm^3=375m^3 \end{gathered}]()
So the total volume is

The answer is 5625 m3.