To determine which points are on the line, first, we compute the equation of the line. To determine the equation of a line that passes through two points we can use the following formula:
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1).](https://img.qammunity.org/2023/formulas/mathematics/college/173ncqk8d261fdp7khmyauyxyn5plaktev.png)
Using the above formula, we get that the equation of a line that passes through the given points is:
![\begin{gathered} y-3=(-5-3)/(1-(-1))(x-(-1)), \\ y-3=(-8)/(2)(x+1). \\ y-3=-4x-4, \\ y=-4x-1. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pgy69dfl2dwxg11d0h6vcaxuur04iof9lo.png)
Now, we evaluate the above equation at every x-entry of the points in the options, if the result of the evaluation is the corresponding y-entry, then the point is on the line:
![\begin{gathered} x=-2;\text{ }y=-4(-2)-1=8-1=7, \\ x=-5;\text{ }y=-4(-5)-1=20-1=19, \\ x=4;\text{ }y=-4(4)-1=-16-1=-17, \\ x=2;\text{ }y=-4(2)-1=-8-1=-9, \\ x=-3;\text{ }y=-4(-3)-1=12-1=11, \\ x=0;\text{ }y=-4(0)-1=0-1=-1. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h6yscsxvidjvq2bct0wakt1j4vld5j5lba.png)
There the following points are on the line:
![(-2,7),(-5,19),(4,-17),(2,-9),(-3,11),(0,-1).](https://img.qammunity.org/2023/formulas/mathematics/college/jsdg4aia1qw1aspvhbv87laz0tn7h7g96d.png)
Answer:
![(-2,7),(2,-9).](https://img.qammunity.org/2023/formulas/mathematics/college/fjzdati8f6e2v8mf3qmiw8diygeefx88kx.png)