Given:
The point given is
![(x_1,y_1)=(-3,4)](https://img.qammunity.org/2023/formulas/mathematics/college/pz27qj4mfhepythyprrop1c7hsuuh11f6c.png)
and the slope is
![m=(5)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/txx7x7q6u2dz22043x6dzw9stuvao4q47f.png)
Required:
Point-slope form of a line passing through given point.
Answer:
Here, we use the point-slope form of a line passing through the point
![(x_(1,)y_1)](https://img.qammunity.org/2023/formulas/mathematics/college/27f1h4f86dmbu0vcnqx8sljptecn9d315e.png)
and having slope
![m](https://img.qammunity.org/2023/formulas/mathematics/high-school/t24zzfq7ozzvf1kotrtyeguenqnn3otq30.png)
is given by,
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
Thus, by substituting the values, the point-slope form of a line passing through the given point is,
![\begin{gathered} y-y_1=m(x-x_1) \\ y-4=(5)/(6)(x-(-3)) \\ 6(y-4)=5(x+3) \\ 6y-24=5x+15 \\ 6y=5x+15+24 \\ 6y=5x+39 \\ y=(5)/(6)x+(39)/(6) \\ y=(5)/(6)x+(13)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x2haw5vq67yazjpr6jo39cltdj8ny5n7um.png)
Final Answer:
The point-slope form of a line passing through the given point is,
![y=(5)/(6)x+(13)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/2g1dqcok9j5ve1kf1k9bhrhktrti6kc64n.png)