Because the triangles have same angles, we can use the relation:
![(x)/(60)=(y)/(135)](https://img.qammunity.org/2023/formulas/mathematics/college/wnbvgkcmmsv4kjju8pmf9bs850iol4e44u.png)
And from this we have the relation:
![x=(60)/(135)y](https://img.qammunity.org/2023/formulas/mathematics/college/1zlxwlf5puq6f4hkvsg1chthmri39x6s9w.png)
The area of this triangles are measured as half of the producr of the basis with the height.
![90\text{ = }(x* y)/(2)\text{ }\rightarrow x* y=90*2\text{ = 180}](https://img.qammunity.org/2023/formulas/mathematics/college/735d5xsu5h59xwat3fb6set2kdwq2qat87.png)
Now we have two equations with two uknown values. We can just substitute the value of x from the first into the second. Than we get:
![(60)/(135)y* y=\text{ 180 }\rightarrow\text{ y }^2\text{= }(180)/(60)*135](https://img.qammunity.org/2023/formulas/mathematics/college/sg9099xxel2e4cw3t6u6wvig0z9axlshur.png)
![y^2=\text{ 405 }\rightarrow\text{ y = }\sqrt[]{405}\text{ = }\sqrt[\square]{9^2^{}*5}\text{ = }9*\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/axz82dmdpzyszd3vophtu6q4m06qb70mpk.png)
From this, we can substitute in the second relation that we got:
![x* y=180\text{ }\rightarrow\text{ x}*9*\sqrt[]{5\text{ }}=180](https://img.qammunity.org/2023/formulas/mathematics/college/v348qoaws8itc4yr1juwaciqaddi5rwgjc.png)
![x=\frac{180}{9*\sqrt[]{5}}=\frac{20}{\sqrt[\square]{5}}=\frac{20*\sqrt[]{5}}{\sqrt[]{5}*\sqrt[]{5}}=\frac{20*\sqrt[]{5}}{5}=4*\sqrt[]{5}cm](https://img.qammunity.org/2023/formulas/mathematics/college/de0gmlubxwyxatstcohxr43bprj98renxe.png)
From this, we got:
![x\text{ = 4}*\sqrt[]{5}\text{ cm}](https://img.qammunity.org/2023/formulas/mathematics/college/anzsrfu6exa5ym1wfxkyhxc7riwcqrg6jz.png)
and
![\text{y = }9*\sqrt[]{5}\text{ cm}](https://img.qammunity.org/2023/formulas/mathematics/college/3kfl5362foe26kwbn9vbe23javnld48646.png)