133k views
2 votes
Find the vertical asymptotes and holes for the graph of the rational function. y = (x+2)(x-5) / (x-5)(x+3)Identify any vertical asymptotes for the graph of the function. Select all that apply.

Find the vertical asymptotes and holes for the graph of the rational function. y = (x-example-1
User Tristan
by
4.8k points

1 Answer

2 votes

To find out the vertical asymptotes, you must find out which value equals the denominator to 0.

In this case will be:

x=5 and x -3 because:


\begin{gathered} Y=\text{ }\frac{(x\text{ -2\rparen\lparen x+5\rparen}}{(x\text{ -5\rparen \lparen x + 3\rparen}} \\ y=\frac{(x-2)(x+5\rparen}{(5\text{ -5\rparen \lparen x+3\rparen}} \\ y=\text{ }((x-2\rparen(x+5\rparen)/(0) \\ y=\text{ undefined} \\ \\ y=\frac{(x-2\rparen(x+5\rparen}{(x\text{ -5\rparen\lparen-3 + 3\rparen}} \\ y=\text{ }((x-2\rparen(x+5\rparen)/(0) \\ y=undefined \end{gathered}

The answers are:

x=5 and x= -3

User Niekname
by
4.7k points