The initial volume is 40 liters.
The volume lost on first day is,
![40\cdot(0.5)/(100)=40\cdot0.005](https://img.qammunity.org/2023/formulas/mathematics/college/cqr667jdv372j1e4eoe35aeg5gfbg77p1a.png)
The volume left after first day leak is,
![\begin{gathered} 40-40\cdot0.005=40(1-0.005) \\ =40(0.995) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kz6l0kid8xdjdua12fs8s2vbzd4spdrvok.png)
The volume leak on second day is,
![40(0.995)\cdot(0.5)/(100)=40(0.995)\cdot0.005](https://img.qammunity.org/2023/formulas/mathematics/college/c7o67yaldh9b2sescdgl5fplc9hk3n5cx1.png)
The volume left after second day leak is,
![\begin{gathered} 40(0.995)-40(0.995)(0.005)=40(0.995)(1-0.005) \\ =40(0.995)\cdot(0.995) \\ =40\cdot(0.995)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hdjep51z9klgp6ch1dsdpen3j5qotgauw4.png)
In same manner if volume decreases for seven days, then volume of gas is,
![40\cdot(0.995)^7](https://img.qammunity.org/2023/formulas/mathematics/college/9qwscgmt9ayehupbq4cj0zv112cxy7lsve.png)
Answer: Option D