Given that:
- You measure 50 textbooks' weights.
- They have a Mean of 77 ounces.
- The Population Standard Deviation is 12.3 ounces.
You need to use the following formula:
![CI=\bar{x}\pm z(\sigma)/(√(n))](https://img.qammunity.org/2023/formulas/mathematics/college/ud7i9orqworuajj7sdpoth7cr46ew4xvrl.png)
Where:
- The Sample Mean is:
![\bar{x}](https://img.qammunity.org/2023/formulas/mathematics/college/mm9lx3mu95k1fv7ugf5fv78u1dipeqq4tt.png)
- The z-value for the corresponding Confidence Interval Level is "z".
- The Sample Standard Deviation is σ.
- The Sample Size is "n".
In this case:
![\begin{gathered} \bar{x}=77 \\ \sigma=12.3 \\ n=50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rnscrb4e0fz7qbxzidopgkl08sp3juwpv2.png)
By definition, for a 95% Confidence Interval:
![z=1.96](https://img.qammunity.org/2023/formulas/mathematics/college/ivb31zvvtlq5cebqrt6wjko8bidzggruqf.png)
Then, by substituting values and evaluating, you get these two values:
![CI=77+1.96\cdot(12.3)/(√(50))\approx80.41](https://img.qammunity.org/2023/formulas/mathematics/college/8l1x61r8v4lymx40w1234ft2z2aqxc7b7y.png)
![CI=77-1.96\cdot(12.3)/(√(50))\approx73.59](https://img.qammunity.org/2023/formulas/mathematics/college/dgpri2x1nkr7esfaanet8paizm2yh6if99.png)
Hence, the answer is:
![73.59<\mu<80.41](https://img.qammunity.org/2023/formulas/mathematics/college/yccltol03phk3fk8f52oi7kjjuggksbjhq.png)