4.6k views
1 vote
Solve for the angles of the triangle described below. Express all angles in degrees and round to the nearest hundredth.a = 6, b = 6,C = 8l

Solve for the angles of the triangle described below. Express all angles in degrees-example-1
User Toom
by
5.0k points

1 Answer

2 votes

ANSWER:

A = 48.19°

B = 48.19°

C = 83.62°

Explanation:

Given:

a = 6, b = 6, c = 8

We can calculate the angles by means of the law of cosines, just like this:


A=\cos^(-1)\left((b^2+c^2-a^2)/(2bc)\right)

We apply in each case to calculate the 3 angles, as follows:


\begin{gathered} A=\cos^(-1)\left((6^2+8^2-6^2)/(2\left(6\right)\left(8\right))\right)=\cos^(-1)\left((2)/(3)\right) \\ \\ A=48.19^(\circ\:) \\ \\ B=\cos^(-1)\left((6^2+8^2-6^2)/(2\left(6\right)\left(8\right))\right)=\cos^(-1)\left((2)/(3)\right) \\ \\ B=48.19^{\operatorname{\circ}} \\ \\ C=\cos^(-1)\left((6^2+6^2-8^2)/(2\left(6\right)\left(6\right))\right)=\cos^(-1)\left((1)/(9)\right) \\ \\ C=83.62^(\circ\:) \end{gathered}

Therefore, the angles are the following:

A = 48.19°

B = 48.19°

C = 83.62°

User Chris Salij
by
4.7k points