We are given that:
![(3x^5-(1)/(9)y^3)^4](https://img.qammunity.org/2023/formulas/mathematics/college/9fj79w7ppdaazfobmcbmj6cw86ov9ur83m.png)
a) We know that binomial theorem in summation form
![(a+b)^n=\sum ^(r=n)_(r\mathop=0)\begin{bmatrix}{n} \\ {r}\end{bmatrix}a^(n-r)\cdot b^r](https://img.qammunity.org/2023/formulas/mathematics/college/3n71ijh82o5zh0zaj8giigiawrozciuiae.png)
Using the formula and substitute
![a=3x^5,b=-(1)/(9)y^3\text{ and n=4}](https://img.qammunity.org/2023/formulas/mathematics/college/aqnts3d4nmjx4phazm1pe6r95l0rr85o5y.png)
Therefore,
![(3x^5-(1)/(9)y^3)^4=\sum ^(r=4)_(r\mathop=0)\begin{bmatrix}{4} \\ {r}\end{bmatrix}(3x^5)^(4-r)\cdot(-(1)/(9)y^3)^r](https://img.qammunity.org/2023/formulas/mathematics/college/pn7bwdflwcthexdq8o97bcrsaxzdt16nf0.png)
Hence, the sum in summation notation that he uses to express the expansion is
![(3x^5-(1)/(9)y^3)^4=\sum ^(r=4)_{r\mathop{=}0}\begin{bmatrix}{4} \\ {r}\end{bmatrix}(3x^5)^(4-r)\cdot(-(1)/(9)y^3)^r](https://img.qammunity.org/2023/formulas/mathematics/college/piifxcqlboab0kz6joyeyneaxgjppxae16.png)
b) Let us now write the simplified terms of the expansion.
Therefore,
Using Combination formula to expand the expression above
The combination formula is,
![^nC_r=(n!)/(r!(n-r)!)](https://img.qammunity.org/2023/formulas/physics/college/pvvxhzivgmj6q1o39ukt3ri8ilau25zzs4.png)
Where,
![n!\text{ = n(n-1)(n-2)}\ldots3.2.1](https://img.qammunity.org/2023/formulas/mathematics/college/b9arg9jrjh8yxr0vujvz38m62guta0n0og.png)
Hence,
![\begin{gathered} =(4!)/(0!\left(4-0\right)!)\mleft(3x^5\mright)^4\mleft(-(1)/(9)y^3\mright)^0+(4!)/(1!\left(4-1\right)!)\mleft(3x^5\mright)^3\mleft(-(1)/(9)y^3\mright)^1+(4!)/(2!\left(4-2\right)!)\mleft(3x^5\mright)^2\mleft(-(1)/(9)y^3\mright)^2 \\ +(4!)/(3!\left(4-3\right)!)\mleft(3x^5\mright)^1\mleft(-(1)/(9)y^3\mright)^3+(4!)/(4!\left(4-4\right)!)\mleft(3x^5\mright)^0\mleft(-(1)/(9)y^3\mright)^4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bvrlkzeuxe2ez7vt9ziq4cno17e7oropc7.png)
Simplifying the above, we have
![=81x^(20)-12x^(15)y^3+(2x^(10)y^6)/(3)-(4x^5y^9)/(243)+(y^(12))/(6561)](https://img.qammunity.org/2023/formulas/mathematics/college/5bw0tlqgsmt918nm4xvqhc99kf6ldmkr3d.png)
Hence, the simplified terms of the expansion are
![81x^(20)-12x^(15)y^3+(2x^(10)y^6)/(3)-(4x^5y^9)/(243)+(y^(12))/(6561)](https://img.qammunity.org/2023/formulas/mathematics/college/mfi807m72wyewsoix2y43o39gjp3h2nx1i.png)