Given
mean = 185 mg/dL
standard deviation = 29
Required: The percent of adults that have cholesterol levels over 190 mg/dL
Step 1: Find the z-score for the given cholesterol level using the formula:
![\begin{gathered} z\text{ = }\frac{x\text{ - }\mu}{\sigma} \\ Where\text{ }\mu\text{ is the mean} \\ and\text{ }\sigma\text{ is the standard deviation} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1vv7exvfct94d84t8dnhimzlfa5v9qo98t.png)
Substituting the given values:
![\begin{gathered} z\text{ = }\frac{190-\text{ 185}}{29} \\ z\text{ = 0.1724} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x423fpv2wbzx9oqeiu52g6g7pbihysf7qd.png)
Step 2: Using a normal distribution table, find the probability of a random value greater than 0.1724
![P(x\text{ >}0.1724)\text{ = 0.43156}](https://img.qammunity.org/2023/formulas/mathematics/college/bedpz8h9l4xv625dtwa2lyt0abx03p75h7.png)
Step 3: Convert to percent by multiplying by 100%
![\begin{gathered} =\text{ 0.43156 }*\text{ 100} \\ =\text{ 43.156}\% \\ \approx\text{ 43.2\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q3tgitxozwvmyu8rghvzb5he5j2ss93wy4.png)
Hence, the percent of adults that should have a cholesterol level greater than 190 mg/dL is 43,2%