For this exercise you need to use the following theorems in order to classify the triangle:
1. If it is a Right triangle, then:
![c^2=a^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/udh1dsx7kwgfauditnn86pp2qhoycm1tvv.png)
Where "c" is the hypotenuse of the Right triangle.
2. If it is an Obtuse triangle, then:
![c^2>a^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/college/2i5gqx7yb62tint0wbilduyxxjgovuy685.png)
Where "c" is the longest side of the triangle.
3. If it is an Acute triangle, then:
![c^2Where](src)
In this case, knowing the side lengths of the triangle given in the exercise, you can identify that:
[tex]c=9" src="
![image](https://img.qammunity.org/2023/formulas/mathematics/college/9v9c3an5zn19jovmol9yp1qd4plxmdl8e6.png)
So you can classify it using the theorems, as following:
![\begin{gathered} 9^2=7^2+8^2 \\ 81\\e113 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w167g9a1e61ui2osvohh9ygcj22oofwhs0.png)
It is not a Right triangle.
![\begin{gathered} \\ 81>113\text{ }\mleft(False\mright) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j86cy2qtn51mdij7jj7medjr1qesutdts5.png)
So it is not an Obtuse triangle.
![81<113\text{ }(True)](https://img.qammunity.org/2023/formulas/mathematics/college/ec93i78mvxee6jah5ggld0yztuxxjmmd54.png)
It is an Acute triangle.
The answer is: Option A.