28.9k views
4 votes
N The three side lengths of a triangle are 7, 8, and 9. Classify the triangle as an acute, obtuse, or right triangle. A Acute B Obtuse C Right triangle D None of the above

User Folkmann
by
7.9k points

1 Answer

4 votes

For this exercise you need to use the following theorems in order to classify the triangle:

1. If it is a Right triangle, then:


c^2=a^2+b^2

Where "c" is the hypotenuse of the Right triangle.

2. If it is an Obtuse triangle, then:


c^2>a^2+b^2

Where "c" is the longest side of the triangle.

3. If it is an Acute triangle, then:

c^2Where

In this case, knowing the side lengths of the triangle given in the exercise, you can identify that:

[tex]c=9" src="
image

So you can classify it using the theorems, as following:


\begin{gathered} 9^2=7^2+8^2 \\ 81\\e113 \end{gathered}

It is not a Right triangle.


\begin{gathered} \\ 81>113\text{ }\mleft(False\mright) \end{gathered}

So it is not an Obtuse triangle.


81<113\text{ }(True)

It is an Acute triangle.

The answer is: Option A.

User Teo Inke
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories