Let the coordinate be as follows.
![(x,y)=\mleft(-(8)/(9),a\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/h23eujtgsv0bi58jvlff6lv20d1jq35fhy.png)
Substitute the coordinates into the equation.
![\mleft(-(8)/(9)\mright)^2+a^2=1](https://img.qammunity.org/2023/formulas/mathematics/college/iaez5ypkjpr000fmua6cqdumylrdjex0zc.png)
Simplify the left side of the equation.
![(64)/(81)+a^2=1](https://img.qammunity.org/2023/formulas/mathematics/college/djlplcq93aeoeta9psu285kd79frn9m6li.png)
Subtract both sides of the equation by 64/81.
![\begin{gathered} a^2=1-(64)/(81) \\ =(81)/(81)-(64)/(81) \\ =(17)/(81) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pie1wp2j5n6j13j74ulhqjaoh64nb80hbr.png)
To obtain the value of a, use the square root property. Find the square root of both sides of the equation.
![a=\pm\sqrt[]{(17)/(81)}=\pm\frac{\sqrt[]{17}}{9}](https://img.qammunity.org/2023/formulas/mathematics/college/6g8794s9riwgvzqdhad9cc8ihtft3bjl8j.png)
Thus, the values of a is as follows.
![a=\frac{\sqrt[]{17}}{9}\text{and -}\frac{\sqrt[]{17}}{9}](https://img.qammunity.org/2023/formulas/mathematics/college/t85tjn14exdxaqh6ivkswtojya85tq366p.png)