51.0k views
5 votes
1. Given R (7,-1),A(3,-6), B(-3,-6), E(-5,4), plot the points and trace the figure.Part A: Determine the lengths of each side (round to the nearest hundredth).Part B: Determine the perimeter

1 Answer

1 vote

We are given four points which are as follows

R (7, -1 ), A (3, -6), B(-3, -6) , and E(-5, 4)

Firstly, we will need to represent the points pictorially

Find the point one after the other

Line RE

Where E= (-5, 4) and R = (7, -1)


\begin{gathered} RE\text{ = }\sqrt[]{(x1-x2)^2+(y1-y2)^2} \\ \text{where x1 = -5, y1 = 4, x2 = 7 and y2 = -1} \\ RE\text{ = }\sqrt[]{(-5-7)^2+(4-(-1)\rbrack^2} \\ RE\text{ = }\sqrt[]{(-12)^2+(4+1)^2} \\ RE\text{ = }\sqrt[]{144\text{ + 25}} \\ RE\text{ = }\sqrt[]{169} \\ RE\text{ = 13 units} \end{gathered}

For RA

R = (7, -1 ) and A = (3, -6)


\begin{gathered} RA\text{ = }\sqrt[]{(x1-x2)^2+(y1-y2)^2} \\ \text{Where x1 = 7, y1 = -1, x2 =3 and y2 = -6} \\ RA\text{ = }\sqrt[]{(7-3)^2+(-1-(-6)\rbrack^2} \\ RA\text{ = }\sqrt[]{(4)^2+(-7)^2} \\ RA\text{ = }\sqrt[]{16\text{ + 49}} \\ RA\text{ = }\sqrt[]{65} \\ RA\text{ = 8.06 units} \\ \end{gathered}

For EB

E = (-5, 4) and B = (-3, -6)


\begin{gathered} EB\text{ = }\sqrt[]{(x1-x2)^2+(y1-y2)^2} \\ \text{Where x1= -5, y1 = 4, x2 = -3, and y2 = -6} \\ EB\text{ = }\sqrt[]{(-5-(-3)\rbrack^2+(4-(-6^2\text{)\rbrack}} \\ EB\text{ = }\sqrt[]{(-2)^2\text{ + (}}4+6)^2 \\ EB\text{ = }\sqrt[]{4\text{ + 100}} \\ EB\text{ = }\sqrt[]{104} \\ EB\text{ = 10. 20 units} \end{gathered}

For AB

A (3, -6) and B

1. Given R (7,-1),A(3,-6), B(-3,-6), E(-5,4), plot the points and trace the figure-example-1
User Armando Cuevas
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories