37.4k views
5 votes
Find the equation of the quadratic function whose graph is a parabola containing the points (0,4), (2,10), and (−1,10).

Find the equation of the quadratic function whose graph is a parabola containing the-example-1
User Dashrb
by
7.9k points

1 Answer

4 votes

A quadratic function is of the form


\begin{gathered} ax^2+bx+\text{c} \\ \text{where} \\ a,b,\text{and c are real numbers} \end{gathered}

let's substitute the values,

(0,4)​, (2,10)​, and (−1,10)


\begin{gathered} 4=a(0)^2+b(0)+c \\ 4=c \end{gathered}
\begin{gathered} 10=a(2)^2+b(2)+c \\ 10=4a+2b+c \end{gathered}
\begin{gathered} 10=a(-1)^2+b(-1)+c \\ 10=a-b+c \end{gathered}

Therefore, let's substitute the value of c in the other equations formed


\begin{gathered} 10=4a+2b+4 \\ 6=4a+2b\ldots\ldots(1) \end{gathered}
\begin{gathered} 10=a-b+4 \\ 6=a-b\ldots\ldots\ldots(ii) \end{gathered}

Let's combine the equation and find a and b


\begin{gathered} 4a+2b=6 \\ a-b=6 \\ a=6+b \\ 4(6+b)+2b=6 \\ 24+4b+2b=6 \\ 24+6b=6 \\ 6b=6-24 \\ 6b=-18 \\ b=(-18)/(6) \\ b=-3 \end{gathered}
\begin{gathered} a-(-3)=6 \\ a+3=6 \\ a=6-3 \\ a=3 \end{gathered}

Finally,


y=3x^2-3x+4

User Skrause
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories