216k views
2 votes
Solve the rational equation, State the excluded values -2/x-8 = x-1/x+2

Solve the rational equation, State the excluded values -2/x-8 = x-1/x+2-example-1
User Fabballe
by
5.8k points

1 Answer

5 votes

Answer::


\begin{gathered} x=3\text{ or 4} \\ x\\eq8,x\\eq-2 \end{gathered}

Step-by-step explanation:

Given the rational function:


(-2)/(x-8)=(x-1)/(x+2)

Step 1: Cross-multiply


-2(x+2)=(x-1)(x-8)

Step 2: Expand and simplify


\begin{gathered} -2x-4=x^2-8x-x+8 \\ -2x-4=x^2-9x+8 \\ x^2-9x+2x+8+4=0 \\ x^2-7x+12=0 \end{gathered}

Step 3: Solve the quadratic equation for x.


\begin{gathered} x^2-7x+12=0 \\ x^2-4x-3x+12=0 \\ x(x-4)-3(x-4)=0 \\ (x-3)(x-4)=0 \\ x-3=0\text{ or }x-4=0 \\ x=3\text{ or }x=4 \end{gathered}

Step 4: Find the excluded values

The excluded values are the values at which the function is undefined.

Set the denominators equal to zero.


\begin{gathered} x-8=0\text{ or x+2=0} \\ x=8,x=-2 \end{gathered}

Thus the solution of the function is:


\begin{gathered} x=3\text{ or 4} \\ x\\eq8,x\\eq-2 \end{gathered}

User Arcadien
by
5.6k points