Restricted values are values that will make the denominator equal to 0.
The denominator in the given expression is:
![\text{ x}^2\text{ - 4x}](https://img.qammunity.org/2023/formulas/mathematics/college/2a9hzfvqvngb8kv3mvqnpnzjfq33e904vb.png)
Now, let's determine what values should be restricted for the denominator not to be zero.
We get,
![\text{ x}^2\text{ - 4x = 0}](https://img.qammunity.org/2023/formulas/mathematics/college/fwn6ccehyfiyie2o7y5f5qy5gs4wvi235t.png)
![\text{ x}^2\text{ = }4\text{x}](https://img.qammunity.org/2023/formulas/mathematics/college/waa3urc2lx460b4x7jxme6bjebslln2ffq.png)
![\text{ }\frac{\text{x}^2}{\text{ x}}\text{ = }\frac{4\text{x}}{\text{ x}}](https://img.qammunity.org/2023/formulas/mathematics/college/uqd8hgmcztfghcgwtzvxoz93cndxzpa45h.png)
![\text{ x = 4}](https://img.qammunity.org/2023/formulas/mathematics/college/rduxy8fpfm7eg2ld2b66sbbbqdku1g5v8b.png)
Therefore, the restricted value of the given ratio is 4.
Or,
![\text{ x }\\e\text{ 4}](https://img.qammunity.org/2023/formulas/mathematics/college/wccwz44dckreo0cvuxe0fmj0um8fihzh8i.png)